
Search for articles, questions, tips

home quick answers discussions features community helparticles

Articles » General Programming » String handling » Regular Expressions

Sunspot, 3 Jul 2003 Rate:

Henry Spencer's Regexp Engine Revisited

A small, Unicode-aware regular expression engine based on Henry Spencer's early work

<!-- Download Links -->

Download source files - 35 Kb

Download demo project - 82 Kb

<!-- Article image -->

<!-- Add the rest of your HTML here -->

Introduction
Regular expressions (sometimes known as regexps) are used to describe text pattern matching in a concise form. They are useful whenever
you need to apply such pattern matching: input validation, lightweight lexing, parsing email addresses, and so on. Many scripting languages
(such as Perl and Python) have a built-in regular expression engines. One is also provided with the .NET framework.

For C++ programmers, there are several regular expression libraries available "in the wild" already. They are faster and more up to date than
this one. They also understand more complex regular expressions (such as Perl regexps or POSIX regexps). One of those is Boost.Regex;
it's even documented on CodeProject, and I highly recommend it in general.

Why provide this one, then?
One answer: code footprint. This library is based on Henry Spencer's early public-domain regular expression implementation. When

 4.88 (19 votes)

12,924,871 members (43,324 online) 1K Sign outRalf-Erik Ebert

compiled with the test program under a Linux/ELF32 system, weights around 20 KB. Under Win32, you get a bit more than 19 KB in release
mode. Most full POSIX-compliant regular expression engines (such as Boost.RegExp, PCRE, GNU Regex, or Henry Spencer's newest
library) usually weight in around 50 KB with similar compilation options.

Code footprint may not seem to be a big deal in those days of 100 GB hard drives and multi megabyte applications. However, there may be
reasons you need a small footprint - you may want to use regular expressions on a Pocket PC, for instance, or put it in a downloadable
ActiveX control.

In addition, sometimes you don't need the full POSIX regular expressions; simple regexes will do find. Or you may want simple code so you
can understand the implementation more easily. In those cases, this small engine is just the deal.

Background
To use this library, you need to know the basic regular expression syntax. A good introduction can be found at this page. This particular
implementation is a superset of the "extended regular expression" dialect.

Essentially, the following are available:

Metacharacters ".", "[...]" and "[^...]";1.
"+", "*" and "?" quantifiers;2.
Anchors "^", "$", "\<" and "\>";3.
Alternation "|";4.
Subexpressions "(...)";5.
Cheap character classes "\x" where x is a letter which maps to a primitive ctype.h function, as follows:

"\m": isalnum()1.
"\a": isalpha()2.
"\b": isblank() (GNU extension to ctype.h; essentially maps space and tab)3.
"\c": iscntrl()4.
"\d": isdigit()5.
"\g": isgraph()6.
"\l": islower()7.
"\p": isprint()8.
"\n": ispunct()9.
"\s": isspace()10.
"\u": isupper()11.
"\x": isxdigit()12.
"\w": isword() (not a ctype.h routine, matches isalnum() + the underscore character)13.

Capitalize the letter to get the reverse match (for instance, "\D" matches every character for which isdigit() returns false)

6.

In other words, it does not support:

Numbered matches "{n}" or "{n,m}" (however, those may be possible to add, at cost of relatively high memory usage).1.
Beginning or end of word matches "\b" and "\B" (those map to the isblank() character class instead); note that "\<" and "\>" can
serve roughly the same purpose.

2.

Backreferences within the regular expression (those were singlehandedly responsible for forcing Mr. Spencer's rewrite of his library,
as far as I understand).

3.

POSIX collating elements "[.char.]" and "[=char=]".4.
POSIX character classes "[:class:]" (however, see the Cheap character classes described above).5.
Case insensitive matches and "basic" regular expressions.6.
Perl-like character classes.7.

In general, consider the engine to support the extended, pre-POSIX regular expression syntax, without the Perl extensions, and with character
classes added "on top" by me as a somewhat ugly hack.

As mentioned before, the original regexp engine was written by Henry Spencer; I found it at ftp://ftp.zoo.toronto.edu/ and modified to
support wide characters with the appropriate preprocessor definition. I also extended it to work with an arbitrary number of subexpressions
(the original code was limited to 9). The resulting interface is close to the POSIX regex interface, but not quite the same, unfortunately. This
gives it a re-entrant interface (the original interface definitely was not re-entrant). I basically tailored the interface so it would be easy to
make it work with dynamic memory allocation.

Using the code

The C interface

You have three ways of using that code. The basic C interface (found in the <file>regexp.h header) will work fine. It is used like this: <PRE
lang=c++>#include "regexp.h" #include <string> #include <vector> int parse_email(const std::string& to_match, std::string& user_name,
std::string& host_and_domain, std::string& domain_suffix) { regexp* compiled; // line A int retval = re_comp(&compiled, "^([A-
Za-z0-9]+)@(.+)\\.(\\a+)$"); // line B if(retval < 0) return retval; // line C regmatch* matches = new regmatch[re_nsubexp(compiled)]; // line D
retval = re_exec(compiled, to_match.c_str(), re_nsubexp(compiled), &matches[0]); // line E re_free(compiled); // line F if(retval < 1) // line G {
delete[] matches; return retval; } user_name = std::string(to_match.begin() + matches[1].begin, to_match.begin() + matches[1].end); // line H
host_and_domain = std::string(to_match.begin() + matches[2].begin, to_match.begin() + matches[2].end); domain_suffix =
std::string(to_match.begin() + matches[3].begin, to_match.begin() + matches[3].end); delete[] matches; return 1; } int main(int argc, char*
argv[]) { if(argc >= 2) { std::string user_name, host_and_domain, domain_suffix; if(parse_email(argv[1], user_name, host_and_domain,
domain_suffix) < 1) { printf("Not an email address\n"); return 1; } printf("User name: %s\nHost/domain: %s\nDomain suffix: %s\n",
user_name.c_str(), host_and_domain.c_str(), domain_suffix.c_str()); return 0; } printf("Usage: %s <email address>\n", argv[0]); return 1; }

The program above contains a cheap email parser (the regular expression is not compliant with any RFC, it just seems to work for the two
test addresses I gave it). It splits the email in user name, domain prefix, and domain suffix (the domain suffix is, say, the ".com" at the end of
an address).

Here are explanations of the interesting lines in function parse_email():

LINE A: regular expressions must be compiled before they can be used. Compiled regular expressions are returned through a pointer
to an opaque type, regexp. You must therefore declare a regexp* to hold the compiled regular expression.

1.

LINE B: this statement creates a compiled regular expression. The resulting compiled expression is placed in &compiled; the
second argument is the regular expression itself. Note that since we express it as a constant C string, we need to double every
backslash in the expression.

The expression works thus: first match any alphanumeric characters, up until the @ sign; then, match one or more of any characters,
followed by a "." (matching is "greedy", which means the last "." of the expression will terminate the second subexpression); finally,
match one or more alphabetic characters.

2.

LINE C: re_comp() returns 0 on success, or a negative error code on failure. Error codes are defined in <file>regexp.h and can be
any of:

REGEXP_BADARG: invalid argument1.
REGEXP_ESIZE: regular expression too big2.
REGEXP_ESPACE: out of memory3.
REGEXP_EPAREN: parenteses () not balanced4.
REGEXP_ERANGE: invalid character range5.
REGEXP_EBRACK: brackets [] not balanced6.
REGEXP_BADRPT: quantifier operator invalid7.
REGEXP_EESCAPE: invalid escape \ sequence8.
REGEXP_EEND: internal error!9.

3.

LINE D: To attempt to match a compiled regular expression, use the re_exec() function. That function takes an array of
regmatch structs. There should be one element in the array per subexpression in the regexp. In line D, we allocate an array to store
the matches. The re_nsubexp() function queries the compiled regular expression for the number of submatches it contains.

4.

LINE E: Here, we finally try to match the regular expression. The first argument to re_exec() is the compiled regexp; then, pass the
string to match, the number of elements in the match array, and the address to the match array. If you're not interested in the
submatches, you can pass 0 as the third parameter and NULL as the last parameter. Make sure you have at least as many elements
in the array you pass as the size passed in the third parameter.

5.

LINE F: Once you're done with a compiled pattern, you should free it using re_free(). Please don't use free() or delete[]
to free it (however, see the Customization section if you want to override the memory allocator used by the regular expression
engine).

Note that you should probably keep those compiled regular expressions around for the duration of the program. Since compilation is
a relatively slow process, it's best to keep the compiled expression as long as it's possible you'll need it again.

6.

LINE G: The re_exec() function can return a negative error code (the same as @code{re_comp()}, 0 (meaning the string
didn't match the regexp), or 1 (meaning the string did match the regexp).

7.

LINE H: The regmatch structure contains two fields: begin and end. They contain offsets into the string passed to re_exec().
begin is the start offset of the submatch, and end is the offset of the character one-past-the-end of the submatch (hence, end -
begin is the length of the submatch).

8.

Element 0 of match array is always the match of the full regexp. Element 1 is the first subexpression (counting from the left), and so
on.

If a given element was not matched, its begin and end fields will be set to -1.

In the example statement, we use the offsets to calculate the begin and end iterator of the substring for the first subexpression.

Note that if you compile the regexp library with the REGEXP_UNICODE preprocessor symbol defined, you get wide character versions of
the re_comp() and re_exec() routines. Those are accessed through the re_comp_w() and re_exec_w() routines. They work
exactly like their non-"_w" versions, except that they take wide character strings instead of multibyte strings. Here's the example function
rewritten for wide characters: <PRE lang=c++>#define REGEXP_UNICODE #include "regexp.h" #include <string> #include <vector> int
parse_email(const std::wstring& to_match, std::wstring& user_name, std::wstring& host_and_domain, std::wstring& domain_suffix) { regexp*
compiled; // line A int retval = re_comp_w(&compiled, L"^([A-Za-z0-9]+)@(.+)\\.(\\a+)$"); // line B if(retval < 0) return retval; // line C
regmatch* matches = new regmatch[re_nsubexp(compiled)]; // line D retval = re_exec_w(compiled, to_match.c_str(), re_nsubexp(compiled),
&matches[0]); // line E re_free(compiled); // line F if(retval < 1) // line G { delete[] matches; return retval; } user_name =
std::wstring(to_match.begin() + matches[1].begin, to_match.begin() + matches[1].end); // line H host_and_domain =
std::wstring(to_match.begin() + matches[2].begin, to_match.begin() + matches[2].end); domain_suffix = std::wstring(to_match.begin() +
matches[3].begin, to_match.begin() + matches[3].end); delete[] matches; return 1; }

The Class Interface

As an example, and also for convenience, the demo code contains a CRegExp class which can serve as a nice interface to the library. That
interface uses the CString class which is available in WTL (note that it can probably work with MFC as well - I just haven't tested it).

Here's the class declaration for the CRegExp class (private details omitted): <PRE lang=c++>class CRegExpException { public:
CRegExpException(int nError); int GetError() const; CString GetErrorString() const; }; class CRegExp { public: CRegExp(LPCTSTR pszPattern);
~CRegExp(); BOOL Exec(const CString& pszMatch); BOOL IsMatched(int nSubExp = 0) const; int GetMatchStart(int nSubExp = 0) const; int
GetMatchEnd(int nSubExp = 0) const; CString GetMatch(int nSubExp = 0) const; int GetNumberOfMatches() const; };

An instance of the CRegExpException class is thrown whenever the library returns an error; GetError() returns the error code (as
described in the C interface section), and GetErrorString() returns a plain English string associated to the error.

The CRegExp class has the following members:

CRegExp::CRegExp(LPCTSTR pszPattern)
Creates a new CRegExp object with regular expression pszPattern.

1.

int CRegExp::GetNumberOfMatches()
Returns the number of matches that can be expected from the pattern which was passed as construction, which is equal to the
number of subexpressions in the pattern, plus one. For instance, if the pattern contains two subexpressions,
GetNumberOfMatches() returns 3.

2.

BOOL CRegExp::Exec(const CString& sMatch)
Attempts to match sMatch with the regular expression specified at construction time. Returns TRUE if the expression was matched,
FALSE otherwise.

3.

int CRegExp::GetMatchStart(int nSubExp = 0)
int CRegExp::GetMatchEnd(int nSubExp = 0)
CString CRegExp::GetMatch(int nSubExp = 0)
BOOL CRegExp::IsMatched(int nSubExp = 0)
Can only be called after a call to CRegExp::Exec(). GetMatchStart() returns the starting offset of the nSubExp'th
subexpression (with 0 meaning the whole expression, 1 the first subexpression, and so on). GetMatchEnd() returns the offset of
one-past-the-end of the nSubExp'th subexpression. GetMatch() returns the string which matched the nSubExp'th
subexpression.

IsMatched() simply returns whether the nSubExp'th subexpression was matched.

Note that when you specify a subexpression that was either not matched or one which is past the range of valid subexpressions,
GetMatchStart() and GetMatchEnd() return -1, and GetMatch() returns an empty string.

4.

Here is the C example (from the C interface section) reworked for wrapper use: <PRE lang=c++>BOOL ParseEMail(const CString& sToMatch,
CString& sUserName, CString& sHostAndDomain, CString& sDomainSuffix) { CRegExp reEMailExpr(_T("^([A-Za-z0-9]+)@(.+)\\.(\\a+)$"));
if(reEMailExpr.Exec(sToMatch) == FALSE) return FALSE; // the regular expression's format should ensure that all // three expressions match, or
the expression doesn't match // at all. ATLASSERT(reEMailExpr.IsMatched(1) && reEMailExpr.IsMatched(2) && reEMailExpr.IsMatched(3));
sUserName = reEMailExpr.GetMatch(1); sHostAndDomain = reEMailExpr.GetMatch(2); sDomainSuffix = reEMailExpr.GetMatch(3); return
TRUE; }

Standard C++ Wrapper

For those of you who do not have access to CString but do have access to the Standard C++ Library, you have not been forgotten. The
wrapper provided here is not in the same class as Boost.RegExp (which is much more comprehensive and is optimized for minimal
heap usage), but it should be sufficient to make the C interface more friendly.

Here's the class declaration for the regular_expression class (private details omitted): <PRE lang=c++>class regular_expression_error
: public std::runtime_error { public: regular_expression_error(int error_code, regexp* re); int code() const; const char* message() const; }; class
regular_expression { public: #ifdef REGEXP_UNICODE typedef wchar_t CharT; typedef std::wstring string_type; #else typedef char CharT;
typedef std::string string_type; #endif typedef typename string_type::size_type size_type; typedef typename string_type::const_iterator
const_iterator; regular_expression(const CharT* pattern); regular_expression(const string_type& pattern); bool exec(const CharT* match); bool
exec(const string_type& match); bool matched(size_type sub_exp = 0) const; const_iterator begin(size_type sub_exp = 0) const; const_iterator
end(size_type sub_exp = 0) const; string_type operator[](size_type sub_exp) const; size_type size() const; };

An instance of the regular_expression_exception class is thrown whenever the library returns an error; code() returns the
error code (as described in the C interface section), and message() returns a plain English string associated to the error.

The regular_expression template has the following members:

regular_expression(const CharT* pattern)
regular_expression(const string_type& pattern)
Creates a new regular_expression object with regular expression passed in pattern. The regular expression is compiled,
and the compiled representation remains until the regular_expression instance is destroyed.

1.

size_type size()
Returns the number of matches that can be expected from the pattern passed to the constructor. This is equal to the number of
subexpressions in the pattern, plus one (the 0'th match, which is the whole expression, is always present).

2.

bool exec(const CharT* match)
bool exec(const string_type& match)
Attempts to match match with the regular expression compiled in the object. Returns true if the expression was matched, and
false otherwise.

Note that match is copied within the instance of the class, to ensure that begin(), end() and operator[] work properly
regardless of what happens to match.

3.

const_iterator begin(size_type sub_exp = 0)
const_iterator end(size_type sub_exp = 0)
bool matched(size_type sub_exp = 0)
string_type operator[] (size_type sub_exp)
Those methods can only be called after a successful call to exec().

begin() returns an iterator pointing to the start of the sub_exp'th subexpression (with 0 being the whole expression, 1 being the
first subexpression, and so on).

end() works the same way, except that it returns an iterator point to one-past-the-end of the sub_exp'th subexpression.

matched() returns whether the sub_exp'th subexpression was matched.

Finally, operator[] is equivalent to string_type(begin(sub_exp), end(sub_exp)), that is, it returns the
sub_exp'th match.

Note that when passing an invalid sub_exp (either because that subexpression was not matched, or because sub_exp is greater
than size()), the range represented by begin() and end() will be empty, and operator[] will return an empty
string_type.

4.

Note that unlike a "traditional" Standard Library class, this is not a template; rather, it's a class that has two personalities depending on the
definition (or lack thereof) of preprocessor symbol REGEXP_UNICODE. Given that the underlying C code is not templatized with the
character type, I had little choice in the matter.

Here is the C example (which should look very familiar by now, otherwise see the C interface section) reworked in all its standard library
glory: <PRE lang=c++>bool parse_email(const std::string& to_match, std::string& user_name, std::string& host_and_domain, std::string&
domain_suffix) { regular_expression email_expr("^([A-Za-z0-9]+)@(.+)\\.(\\a+)$"); if(!email_expr.exec(to_match)) return false; // the regular
expression's format should ensure that all three // expressions match, or the expression doesn't match at all. assert(email_expr.matched(1)
&& email_expr.matched(2) && email_expr.matched(3)); user_name = email_expr[1]; host_and_domain = email_expr[2]; domain_suffix =
email_expr[3]; return true; }

How to include the library in your project
I haven't provided a project file for the library itself because you probably won't want to make a DLL out of this library. Its code footprint is
small enough to link it statically.

The following files serve as the "core" of the library:

regexp.h (public header)
regexp_int.h (internal header)
regexp_custom.h (internal header)
regmagic.h (internal header)
memory.c (memory allocation routines)
regerror.c (implementation of error translation function)
regexp.c (main implementation file)
report.c (default report functions)
widechar.c (default implementation for Unicode character support)

The following files are optional and are only needed if you want to use the "old-style" interface and the substitution functions:

frontend.c
regsub.c

Finally, the following files are unit tests inherited from the original source files; you probably don't need them, but they are provided
together with the rest of the library for consistency purposes:

try.c
timer.c
tests

Depending on which wrapper you may want to use, you can also add the wtl/CRegExp.* or the stl/stdregexp.* files to your project. The demo
projects show how this can be done.

Customization
Libraries such as this one tend to be used in a variety of context. Hence, I've tried to isolate the dependencies on runtime library routines so
they can be easily overridden.

By default, the library allocates memory using malloc() and free(). However, if you want to use a custom allocator, simply provide
implementations of the following two routines: <PRE lang=c++>extern "C" void* re_malloc(size_t sz); extern "C" void re_cfree(void* p);

Those should have similar semantics to malloc() and free(). The provided memory.c file contains a default implementation which uses
standard malloc() and free(); if you want to override this implementation, simply provide your own and don't link with the provided
memory.c file.

In addition, when compiling with REGEXP_UNICODE, there is some attempt to providing a multibyte interface for those who work with
mixed wide character/multibyte strings. It doesn't work quite well (subexpression offsets are not calculated properly), but if you are
interested in using it, you'll definitely want to override the following two functions: <PRE lang=c++>extern "C" wchar_t*
re_ansi_to_unicode(const char* s); extern "C" char* re_unicode_to_ansi(const wchar_t* s);

Those functions should use re_malloc() to create a new string of the appropriate type. By default, the C library mbstowcs() and
wcstombs() routines are used; however, you may want to map those to, say,
::MultiByteToWideChar()and ::WideCharToMultiByte(). The default implementation is in widechar.c; provide your own
implementation and don't link with widechar.c to override the default behaviour. Note that you'll also have to provide an implementation of
isblank() and iswblank() if you don't use the provided widechar.c; see comments in the file for details.

Finally, the regular expression library calls a function to report internal errors in a more fine-grained manner than through the REGEXP_*
error codes. By default, reporting is done through fprintf(stderr, ...). To override this behaviour, provide <PRE
lang=c++>extern "C" void re_report(const char* error);

(Note that the error is always provided in plain chars) You could provide, for instance, <PRE lang=c++>extern "C" void re_report(const char*
error) { char buffer[128]; ::wsprintfA(buffer, "REGEXP ERROR: %s\n", error); ::OutputDebugStringA(buffer); }

The default implementation is in file report.c. Simply provide your own implementation and don't link with report.c if you don't like the
default implementation.

The Demo Projects
The first demo program (re2demo.exe) is a simple WTL dialog application which allows you to explore different regular expressions. The top
field should contain the regular expression; the middle field should contain the string to match. Once you press the "Try It" button, the
matches will be placed in the bottom combo box (open the combo box to see all the submatches). If there was an error, or the string didn't
match the regexp, the error will be printed as the first (and only) entry of the combo box.

Note that the demo program is not meant to be a demonstration of clean WTL style. It's mostly an example of how to integrate the regular
expression engine in your own programs.

(Actually, I really should confess that I only wrote it to make sure the CRegExp class works properly)

The second demo program (try.exe) is a simple unit testing program which was provided in the original source code archive. It is provided in
pre-compiled form simply as a convenience.

Future Directions
A few additional utilities, such as a string substitution routine and a global match routine, could be added with relatively little trouble. I've
not done this yet in the interest of posting this code quickly.

In addition, I'm pretty sure it would be possible to support the {n} and {m,n} quantifiers (although it may be costly in terms of memory
usage). I may decide to add this eventually.

Also, the fact that the plain char versions don't work right when REGEXP_UNICODE is defined is definitely a bug. The workaround right
now is to have two separate libraries--one Unicode, one multibyte. It's a hack, and I dislike keeping such things around.

Finally, I seem to recall some modified version of this regexp engine which optimized some common case to yield better performance. I may
eventually hunt it down and apply those modifications to the version provided here.

Related Work
There is another CRegExp class which exists in the wild. The author of this class is to thank for the inspiration of my implementation; that
class made me aware of the availability of Mr. Spencer's code. However, one thing I didn't do was merge the C routines inside my own
CRegExp class, the way it's done in the other implementation. Mainly, I wanted the code to remain easily customizable for non-MFC
people, yet still benefit from the modifications I did (Unicode support and so on). The easiest way to do this is to keep the plain C interface
around.

Before I ended up with this specific implementation, I tried to extract Mr. Spencer's latest implementation (which is buried somewhere in the
Tcl/Tk code). I managed to extract it, but was disappointed by the rather large code footprint.

I also considered PCRE; unfortunately, their Unicode support was still experimental at the time, and it's based on UTF-8 encoded strings
rather than UCS-2 wide character strings and I needed UCS-2. It's unfortunate because it is relatively small and it's supposed to be a very fast
library. Oh, well.

Finally, there are articles on CodeProject about the same subject. They provide tutorials for different libraries. You may want to look at those
for alternative solutions.

Conclusion
We have seen a short tutorial on how to use the regular expression package provided with this article. Also, we've seen how to use the C++
two classes provided as example wrappers around the package.

From the comments on the regular expression syntax, it should be clear by now that this is not the most complete, nor the fastest, library
available. However, it's simple, easy to understand, portable, and small. If you're looking for any of those criteria over completeness and
speed, this library will fit your needs better.

I hope you'll enjoy using this as much as I enjoyed tweaking its code.

History

2003/06/28 - Initial revision
2003/07/03 - Added missing file to demo project

License
This article has no explicit license attached to it but may contain usage terms in the article text or the download files themselves. If in doubt
please contact the author via the discussion board below.

A list of licenses authors might use can be found here

Share

About the Author

You may also be interested in...

Lean and Mean Blogging Revisited Visual COBOL New Release: Small
point. Big deal

QuickSort Revisited, Optimised, and
Stabilised

SAPrefs - Netscape-like Preferences
Dialog

10 Ways to Boost COBOL
Application Development

Generate and add keyword
variations using AdWords API

EMAIL

I'm a senior software developer, working at Silanis Technology (http://www.silanis.com). I've acquired quite a bit of experience (usually the
hard way!) in Win32 and raw COM programming on the job. In my spare time, I like to monkey around with POSIX code.

I'm mostly interested in portable C++ libraries. I'm happiest when I develop portable C++ code--C++ being such a powerful language as
long as one keeps clear of the rather nasty subtleties of the language.

I hope the articles I contribute will be of some help to someone. If even one person gains a few hours through use of that code, I'll be very
happy.

When not coding, I like to listen to Anime and try to learn Japanese. It's not working too well so far, unfortunately. :{)

Sunspot
Web Developer
Canada

Add a Comment or Question Search Comments Go

Comments and Discussions

Spacing Relaxed Layout Normal Per page 25 Update

First Prev Next

rrarey 8-Feb-12 19:13

Hermann Schinagl 22-Nov-10 17:45

Cheeso 3-Jun-10 1:14

lexer666 19-Sep-09 3:32

lrueckert 9-Jun-09 18:43

Jeff Sidlosky 3-May-07 2:13

Cheeso 3-Jun-10 1:12

Kontza 13-Apr-07 11:06

c-smile 27-Feb-07 23:09

REDGENE2005 14-Nov-05 2:47

cop1 12-Jan-05 4:02

theetete 3-Jan-05 15:55

Test eye 3-Aug-04 0:02

Sunspot 4-Aug-04 20:31

Henk Demper 16-Mar-04 6:37

Husayt 29-Feb-04 6:28

Sunspot 18-Mar-04 3:03

Bluespin 16-Jan-04 9:18

Sunspot 18-Jan-04 23:01

Bluespin 20-Jan-04 14:33

jpeg 14-Oct-03 16:08

These samples compile and run after conversion on VS 2010, but
needs WTL 8

ignore case

FYI: For a full-featured Regex engine in C/C++, see PCRE

Global search

Match wstrings

No lazy support!!! :(

Re: No lazy support!!! :(

Buffer overflow

Fixes of \W matching

fatal error RC1015: cannot open include file 'atlres.h'

Issue

nsubexp bug ?

A Bug

Re: A Bug

Error in regexp

how to make it act ungready???

Re: how to make it act ungready???

regexp and utf8

Re: regexp and utf8

Re: regexp and utf8

Problem with * and ?

Permalink | Advertise | Privacy | Terms of Use | Mobile
Web02 | 2.8.170510.2 | Last Updated 3 Jul 2003

Sprache auswählen ▼
Article Copyright 2003 by Sunspot

Everything else Copyright © CodeProject, 1999-2017
Layout: fixed | fluid

Sunspot 15-Oct-03 1:02

testasdff 4-Feb-04 18:39

whatever_wherever 25-Sep-03 17:18

Joel Lucsy 3-Jul-03 15:43

Last Visit: 12-May-17 22:13 Last Update: 13-May-17 8:56 Refresh 1 2 Next »

 General News Suggestion Question Bug Answer Joke Praise Rant Admin

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

Re: Problem with * and ?

Re: Problem with * and ?

Copy of COPYRIGHT in downloadable zip

Cheap char classes within []'s

